Optimal Skill Mixing Under Technological Advancements

Elmer Zongyang Li

Department of Economics Cornell University

Search and Matching Workshop in Asia-Pacific August, 2024

Motivation

- The nature of work has changed dramatically
 - Decline in "routine" tasks and related worker skills Acemoglu(1999), Autor, Levy and

Murane (2003), Autor and Dorn (2013)

- Rising importance of social skills Cortes, Jaimovich, and Siu (2021), Deming (2017)
- <u>Remains unclear</u>

specific specialized skill \iff a broad range of skills ("skill mixing")

- Different implications
 - Specialization in skill demand \rightarrow experts in a single dimension
 - \circ Skill mixing \rightarrow multidisciplinary schooling and training

Evidence

Returns

Model

Quantitative

Motivation

Q BUSINESS

FINANCE

What does Goldman Sachs want in a coder? For them to have studied philosophy

Bianca Chan Apr 18, 2024, 6:26 PM GMT-4

 OECD: 27% of jobs at high risk from AI revolution, 45%-60% of all workers are threatened to be replaced by automation before 2030

Intro

Evidence

Returns

Model

Quantitative

This Paper

1. Documents new facts about skill mixing

- Rich data: incumbent jobs + new vacancies, employer vs. worker
- New angle-based measure

2. A multi-d directed search model with occupation design

- Multi-dimensional skills + non-linear technology
- Before producing, firms first design the occupation, st a cost (Acemoglu, '99)
- Endogenous human capital evolvement
- 3. Quantify the underlying drivers
 - Skill mixing changes and related employment, wage dynamics

Evidence

Returns

Model

Quantitative

- - Mainly for non-routine [analytical, interpersonal, computer, leadership, design...]
 - Mainly for medium- to low-wage occupations
 - Source: within-occupation > worker reallocation
 - Persists controlling gender, industry, occ, skill supply (edu, exp)
- Important wage premiums of occ. & education choices
 - Wage returns: 1.5/6.5 % in skill mixed occupation/having mixed set of skills
- Main channel: \uparrow skill complementarity, cost factors
 - Account for 86% and 14% of growth in skill mixing
 - Skill efficiency and supply much minor role
 - Complementarity \uparrow 88% and 27% of wage & emp. gaps; cost \downarrow gaps

Intro

Evidence

Returns

Model

Quantitative

Contributions to the Literature

- Labor market dynamics that focuses on skill mixing
 - Skill/task biased: Tinbergen (1975); Katz and Murphy (1992); ALM (2003); Acemoglu and

Autor (2011); Autor and Dorn (2013); Deming (2017); Deming and Kahn (2018)

• Within-occupation variation: Autor and Handel (2013); Atalay et al. (2020); Freeman,

Ganguli, and Handel (2020); Cortes, Jaimovich, and Siu (2021)

- Directed search model w/. multi-d + endogenous firm & worker
 - Menzio and Shi (2010,2011); Kaas and Kircher (2015); Schaal (2017); Baley, Figueiredo, and Ulbricht (2022); Braxton and Taska (2023)
- Matching focusing on firm skill demand trade-offs under GE forces
 - Roy (1951); 1-D: Shi (2001); Hagedorn, Law, and Manovskii (2017)
 - Multi-D: Yamaguchi (2012); Lindenlaub (2017); Lise and Vinay (2020); Ocampo (2022)
 - Bundling: Rosen (1983); Murphy (1986); Heckman and Sedlacek (1985), Choné and Kramarz (2021); Edmond and Mongey (2021)

Intro

Evidence

Returns

Model

Quantitative

Evidence of Skill Mixing

Intro

Evidence

Returns

Model

Quantitative

Angle Measure of Skill Mixing [2D]

Evidence

Returns

Model

Quantitative

Angle Measure of Skill Mixing [Multi-D]

Definition (Degree of Skill Mixing of an occupation)

The skill mixing index for an occupation $\mathbf{y} = \{y_1, ..., y_k, ..., y_K\} \in S \subset \mathbb{R}^{K+}$ is the cosine similarity between its skill vector and the norm $\hat{\mathbf{v}}$.

$$Mix(\mathbf{y}) = \frac{\mathbf{y}\hat{\mathbf{v}}}{||\mathbf{y}|| \cdot ||\hat{\mathbf{v}}||}, \text{ where } \hat{\mathbf{v}} = [1, 1, ..., 1]' \subseteq \mathbb{R}^{K+1}$$

- Interpretation
 - Essentially, $Cosine(\theta)$ in multi-d, $\hat{\mathbf{v}}$ is norm
 - Accommod. multi-d, focuses on angle similarity, normalized in [0,1]
 - Alternative: Inverse Herfindahl, Absolute Distance details

Intro

Evidence

Returns

Model

Quantitative

Data and Skill Measures

Fvidence

Quantitative

- Occupational Information Network (O*NET) 2005-2018
 - Detailed descriptors for 970 7-digit occupations example content
 - Survey of incumbent workers, info on skill importance (intensive margin)
- Lightcast (formerly "Burning Glass") 2007-2017
 - Analyzes millions of online job postings into codified skills
 - Info on whether a skill is required for a vacancy (extensive margin)
- Skill Measures Acemoglu and Autor (2011) & More
 - Non-routine: analytical, interpersonal, computer; routine ["<u>RNR</u>"] details
 - ▶ Robustness: leadership, design (non-routine); alternative measures
 - Lightcast: keywords based Braxton & Taska (2022) details

O*NET Skill Measures and Composing Descriptors

Analytical

- Analyzing data/information
- Thinking creatively
- Interpreting information for others

Interpersonal

- Establishing and maintaining personal relationships
- Guiding, directing and motivating subordinates
- Coaching/developing others

Computer

- Interacting With Computers
- Programming
- Computers and Electronics

Broader skill measures

Routine

- Importance of repeating the same tasks
- Importance of being exact or accurate
- Structured work
- Pace determined by speed of equipment
- Controlling machines and processes
- Spend time making repetitive motions

Intro

Evidence

Returns

Model

Quantitative

Fact 1: Increase in Skill Mixing at 7-Digit Occupations

Figure: Density for Skill Mixing Indexes (Cosine Similarities), 2005 vs. 2018

Evidence

Fact 2: Growth in Skill Mixing

Figure: Trend of Skill Mixing in the US Economy, 2005-2018

Examples Updating issue Robust - measure Robust - index Skill pairs Composition of updates

Fact 2: Growth in Skill Mixing

total	within	across	total	within	across	total	within	across
10.12	9.46	0.66	 10.09	10.74	-0.65	5.16	4.37	0.78
12.37	9.72	2.65	11.00	9.69	1.31			

Fact 3: Skill Mixing Increases Regardless of Workforce

	RNR Skills	Non-routine Skills
	(1)	(2)
A. Full O*NE	T, 2005-2018	
V	0.70***	0.71***
Year indicator	[0.07]	[0.06]
Observations	237,885	237,885
R-squared	0.83	0.83
B. O*NET Constant	Updates, 2005	5-2018
V	0.75***	0.65***
Year Indicator	[0.11]	[0.11]
Observations	107,956	107,956
R-squared	0.81	0.82
C. Lightcast	, 2007-2017	
Vaarindiaatar		0.33**
rear indicator		[0.15]
Observations		532,636
R-squared		0.87
Experience and edu controls	Х	Х
Gender \times edu \times ind \times occ FE	Х	Х

Table: Annual Changes in Skill Mixing Indexes (in Percentiles)

Intro

Evidence

Returns

Model

Quantitative

Fact 4: Medium- to Low-Wage Occupations More Mixed

Figure: Skill Mixing Index Change by Occupation Groups, 2005-2018

Evidence

Fact 5: Returns to Skill Mixing

- National Longitudinal Survey of Youth (NLSY 79 & 97) 2005-2019
 - Detailed employment and educational histories + pre-market abilities

Analytical: AFQT; Interpersonal: social (Deming, '17); Computer: occ/major's computer skill

Dependent: ln (hourly wage)	(1)	(2)	(3)	(4)
Mix (non-routine skills): Occupation	0.017***	0.015***	0.001	0.014***
	[0.005]	[0.005]	[0.006]	[0.005]
Mix (non-routine skills): Worker		0.065***	0.070***	
		[0.017]	[0.017]	
Interaction			0.032***	
			[0.008]	
Ethnicity, gender, age/year, region, edu FE	Х	Х	Х	Х
Occupation FE	Х	Х	Х	Х
Worker FE				Х
Observations	88,391	79,343	79,343	88,391
R-squared	0.41	0.43	0.43	0.76

Intro

Evidence

Returns

Model

Quantitativ

Intro

Evidence

Returns

Model

Quantitative

Conclusion

A Directed Search Model with Occupation Design

Environment

- Multi-dimensional Skill Set-up
 - Discrete time, 1-1 matching, $K \ge 2$ skills
 - A unit of heterogeneous workers $\mathbf{x} = \{x_1, ..., x_k, ..., x_K\} \in S \subset \mathbb{R}^{K+1}$
 - A mass of risk-neutral firms $\mathbf{y} = \{y_1, ..., y_k, ..., y_K\} \in S \subset \mathbb{R}^{K+}$
 - CES Matching production Lindenlaub (2017); Lise & Postel-Vinay (2020)

$$f(\mathbf{x}, \mathbf{y}) = \left[\sum_{k=1}^{K} (x_k \alpha_k y_k)^{\sigma}\right]^{\frac{1}{\sigma}}$$

- Endogeneous Occupation Design
 - $\circ~$ Both vacant & incumbent firms optimally choose y before producing
 - Pay $C(\mathbf{y}) = \tau[\sum_{k=1}^{K} (y_k)^{\rho}]$ any cost that \uparrow in \mathbf{y} paid before wage

Intro

Evidence

Returns

Model

Quantitative

Model in Action

- Continuum submarkets by (\mathbf{x}, \mathbf{y}) , surplus share ω , tightness $\theta(\mathbf{x}, \mathbf{y}, \omega)$
- Endogenous skill investment & (multi-d) job ladder

$$\pi(x'_j|x_j, y_j) = \frac{y_j - x_j}{x'_j - x_j} \mathbf{1}(x_j < y_j) \times \gamma_j^{up} + \frac{y_j - x_j}{x'_j - x_j} \mathbf{1}(y_j < x_j) \times \gamma_j^{down}$$

 $\gamma_j^{up/down}$ is the share of skill j that worker can catch in a period

Model Equilibrium

• Worker's Problem

$$U(\mathbf{x}) = b + \beta E \left\{ \max_{\mathbf{y}',\omega'} \underbrace{p(\theta(\mathbf{x}',\mathbf{y}',\omega'))W(\mathbf{x}',\mathbf{y}',\omega')}_{\text{get employed}} + \underbrace{\left[(1 - p(\theta(\mathbf{x}',\mathbf{y}',\omega'))\right]U(\mathbf{x}')\right]}_{\text{stay unemployed}} \right\}$$
$$W(\mathbf{x},\mathbf{y},\omega) = \underbrace{\omega(f(\mathbf{x},\mathbf{y}) - C(\mathbf{y}))}_{\text{get surplus}} + \beta(1 - \delta)E \left\{ \max_{\mathbf{\tilde{y}}',\tilde{\omega}'} \underbrace{p(\theta(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}'))W(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}')}_{\text{change employer}} + \underbrace{\left[(1 - p(\theta(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}'))\right]W(\mathbf{x}',\mathbf{y}',\omega)}_{\text{change employer}} \right\}$$

stay with current employer

Intro

Evidence

Returns

Model

Quantitative

Model Equilibrium

Worker's Problem

$$\begin{aligned} U(\mathbf{x}) &= b + \beta E \Big\{ \max_{\mathbf{y}',\omega'} p(\theta(\mathbf{x}',\mathbf{y}',\omega'))W(\mathbf{x}',\mathbf{y}',\omega') + \big[(1 - p(\theta(\mathbf{x}',\mathbf{y}',\omega')) \big] U(\mathbf{x}') \Big\} \\ W(\mathbf{x},\mathbf{y},\omega) &= \omega(f(\mathbf{x},\mathbf{y}) - C(\mathbf{y})) + \beta(1 - \delta)E \Big\{ \max_{\mathbf{\tilde{y}}',\tilde{\omega}'} p(\theta(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}'))W(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}') \\ &+ \big[(1 - p(\theta(\mathbf{x}',\mathbf{\tilde{y}}',\tilde{\omega}')) \big] W(\mathbf{x}',\mathbf{y}',\omega) \Big\} + \delta U(\mathbf{x}') \end{aligned}$$

Firm's Problem

$$\begin{split} J(\mathbf{x},\mathbf{y},\omega) &= \max_{\mathbf{y}} \underbrace{(1-\omega)(f(\mathbf{x},\mathbf{y})-C(\mathbf{y}))}_{\text{design occupation}} + \beta(1-\delta)E\Big\{\underbrace{(1-p(\theta(\mathbf{x}',\tilde{\mathbf{y}}',\tilde{\omega}'))J(\mathbf{x}',\mathbf{y}',\omega)}_{\text{retain the worker}}\Big\} \\ \text{By free-entry: } c &= \beta E\Big\{q(\theta(\mathbf{x},\mathbf{y},\omega))J(\mathbf{x},\mathbf{y},\omega)\Big\} \end{split}$$

- Equilibrium Properties
 - Block-recursive Menzio & Shi (2010,2011) due to directed search + submarkets
 - $\circ \Delta$ skill mixing, wage, employment to model parameters

Model

>

Intro

Evidence

Returns

Model

Quantitative

Conclusion

What Are the Drivers of Skill Mixing and How Do They Affect Labor Market Dynamics?

Measurement and Calibration

- Measurement (NLSY, 2005–2006 and 2016–2019)
 - Occ: high-wage (professional & white-collar), low-wage (blue-collar & service)
 - Worker: low-type (avg. of below mean x_i^{low}), high-type
- Skill Supply Variation
 - Skill change at rate $\gamma_i imes$ skill gap Lise & Postel-Vinay (2020) Skill supply
 - Across period: according to occ or college major in NLSY more
 - Within period: according to occ via Markov process

Intro

Evidence

Returns

Model

Quantitative

Calibrated Parameters

Param.	Description	٧	/alue	Source/Target		
	A. Search				Return	S
β	Discount Rate	(0.96	Interest rate of 4%	Model	
δ	Job separation rate	(0.10	Shimer (2005)	Ouanti	itative
ω	Worker share of surplus	(0.60	Labor share of GDP		
b	Unemploy. benefit % of output	(0.42	Braxton et. al (2020)	Conclu	ision
η	Elasticity of matching	(0.50	Mercan & Schoefer (2020)		
μ	Matching efficiency	(0.65	Mercan & Schoefer (2020)		
	B. Annual skill adjustment	(Up)	(Down)			
γ_a	Analytical/computer skill	0.36	0.10	Lise & Postel-Vinay (2020)		
γ_p	Interpersonal skill	0.05	0.00	Lise & Postel-Vinay (2020)		
γ_r	Routine skill	1.00	0.36	Lise & Postel-Vinay (2020)		

Intro

Estimated Parameters

					LVIGCIICC
	C. Skill efficiency	(2005)	(2018)		
α _a	Analytical/computer skill	0.63	0.95	Lindenlaub (2017)	Returns
α_p	Interpersonal skill	0.05	0.08	Lise & Postel-Vinay (2020)	Model
α_r	Routine skill	0.14	0.06	Lindenlaub (2017)	Quantitativ
	D. Internally estimated	(2005)	(2018)	Moments Identification	Quantitative
σ	Inverse elasticity (low)	0.62	0.30	Within-occ covar abilities & wage	Conclusion
σ	Inverse elasticity (high)	0.61	0.29	Within-occ covar abilities & wage	
τ	Scaler of cost	0.22	0.76	Employ. distribution & relative wage	
ρ	Convexity of cost	3.92	4.99	Degree of skill mixing	
С	Vacancy posting cost % output	0.93	0.90	Unemployment rate	

- Estimation strategy SMM Numerical algorithm
 - 1. Given $\Theta = \{\sigma, \tau, \rho, c\}$, solve SS firm and worker policy
 - 2. Simulate 10,000 workers for T(T > 100) periods, obtain dist of LM outcomes
 - 3. Minimizes the distance between the model vs. data moments

Worker Job Ladder

Counterfactuals

- Shut down channels sequentially from the "2018 economy"
 - 1. Skill efficiencies α_k
 - 2. Initial skill distribution $G(\mathbf{x})$
 - 3. Inverse elasticity σ
 - 4. Scaler of cost τ
 - 5. Convexity of cost ρ
- Non-linear interaction → remove forces in different orders and average across orders
- Contribution of a "channel": difference between the actual and channelfree economy

Intro

Evidence

Returns

Model

Quantitative

Forces at Play: Skill Mixing, Wages

- Complementarity & cost explain 86% and 14% of the increase in skill mixing
- $\,\circ\,$ Complementarity accnt. 88% of the \uparrow wage premium, while cost \downarrow it

Forces at Play: Employment, Different Skills

- Skill efficiency most important for ↑ employment of high-wage occupation (73%)
- Analytical/Computer skill biggest role

Ouantitative

- Skills are inevitably embedded in workers → demand of skill mixtures
- New facts about skill mixing (non-routine, within mid-to-lower occs., wage premium)
- New framework of multi-d search & occ. design, complementarity matters

Important to consider demand of "skill mixtures" and provide right "mixed" sets of skills to workers to face the challenge brought by technological change.

Intro

Evidence

Returns

Model

Quantitative

Appendix

Worker Survey **Dack**

Appendix

A. How important is NEGOTIATION to the performance of your current job?

* If you marked Not Important, skip LEVEL below and go on to the next skill.

B. What level of NEGOTIATION is needed to perform your current job?

O*NET Modules and Principle Content Dack

Survey	Main content
Education/ training	Required education, related work experience, training
Knowledge	Various specific functional and academic areas (e.g., physics, marketing, design, clerical, food production, construction)
Skills	Reading, writing, math, science, critical thinking, learning, resource management, communication, social relations, technology
Abilities	Writing, math, general cognitive abilities, percep- tual, sensory-motor, dexterity, physical coordina- tion, speed, strength
Work activities	Various activities (e.g., information processing, making decisions, thinking creatively, inspecting equipment, scheduling work)
Work context	Working conditions (e.g., public speaking, teamwork, conflict resolution, working outdoors, physical strains, exposure to heat, noise, and chemicals, job autonomy)
Work style	Personal characteristics (e.g., leadership, persis- tence, cooperation, adaptability)

O*NET Versions and Corresponding Years **Dack**

	Released Year	Division	Work Context	Work Activities	Knowledge	Skills	Abilities	Considered Year
O*NET 13.0	2008	Post 2005	73.79%	73.79%	73.79%	73.79%	73.79%	2005
		Before 2005	26.21%	26.21%	26.21%	26.21%	26.21%	
O*NET 18.0	2013	Post 2009	57.15%	57.21%	57.21%	99.89%	57.21%	2009
		Before 2009	42.85%	42.79%	42.79%	0.11%	42.79%	
O*NET 22.0	2017	Post 2013	57.84%	57.67%	57.67%	57.67%	57.67%	2013
		Before 2013	42.16%	42.33%	42.33%	42.33%	42.33%	
O*NET 25.0	2022	Post 2018	54.52%	54.52%	54.52%	54.52%	54.52%	2018
		Before 2018	45.48%	45.48%	45.48%	45.48%	45.48%	

Notes: The table summarizes different versions of the O*NET (Occupational Information Network) database, along with their released year, year division for the 5 modules (work context, work activities, knowledge, skills, abilities), and the considered year for each version. The "Post" and "Before" rows indicate whether the data in each version was collected post or before a particular year. The "Considered Year" column represents the year considered to be corresponding to each release of O*NET based on the year division of data.

Top Occupations in Mixing Non-routine Skills (back)

Top Occupations	Year	Analytical	Computer	Inter- personal	Routine	Mixing Index	Percentile
Sales counter clerks	2005	0.13	0.32	0.30		0.946	7
(Sales)	2018	0.50	0.52	0.39		0.993	99
Recreation facility attendants	2005	0.24	0.18	0.39		0.947	7
(Personal Care and Services)	2018	0.38	0.40	0.35		0.998	99
Data entry keyers	2005	0.56	0.77	0.27		0.935	3
(Office/Admin)	2018	0.55	0.66	0.43		0.985	90
Packers, fillers, and wrappers	2005	0.58	0.44	0.16		0.915	1
(Operators/Fabricators/Laborers)	2018	0.52	0.40	0.42		0.994	99

O*NET Skills (back

Non-routine Analytical

- Analyzing data/information
- Thinking creatively
- Interpreting information for others

Non-routine Interpersonal

- · Establishing and maintaining personal relationships
- Guiding, directing and motivating subordinates
- · Coaching/developing others

Computer

- · Interacting With Computers
- Programming
- Computers and Electronics

Design

- Design
 - Drafting, Laying Out, and Specifying Technical
 - Devices, Parts, and Equipment

Routine
Importance of repeating the same tasks
Importance of being exact or accurate

- · Structured v. Unstructured work (reverse)
- · Pace determined by speed of equipment
- · Controlling machines and processes

•

Spend time making repetitive motions

Leadership

- · Making Decisions and Solving Problems
- Developing Objectives and Strategies
- Organizing, Planning, and Prioritizing Work
- · Coordinating the Work and Activities of Others
- Developing and Building Teams
- · Guiding, Directing, and Motivating Subordinates
- · Provide Consultation and Advice to Others

Broad O*NET Skills back

Analytical	Mechanical	Interpersonal
Deductive Reasoning	Multilimb Coordination	Assisting and Caring for Others
Inductive Reasoning	Speed of Limb Movement	Selling or Influencing Others
Mathematical Reasoning	• Mechanical	Resolving Conflicts and Negotiating
Number Facility	Performing General Physical Activities	 Coaching and Developing Others
Mathematics	Handling and Moving Objects	Staffing Organizational Units
Economics and Accounting	Controlling Machines and Processes	Service Orientation
Reading Comprehension	Operate Vehicles, Mechanized Devices or Equipmnt	Administration and Management
Writing	Repairing and Maintaining Mechanical Equipment	Customer and Personal Service
 Speaking 	Repairing and Maintaining Electronic Equipment	
Oral Comprehension	Installation	
Written Comprehension	Equipment Maintenance	
Oral Expression	• Repairing	
Written Expression	Production and Processing	

Lightcast Key Words (back)

• "thinking"

Appendix

Analytical	Interpersonal	Computer			
• "research"	"communication"	• "computer"			
• "analy"	• "teamwork"	Any skill flagged			
 "decision" 	 "collaboration" 	as software related			
 "solving" 	 "negotiation" 				
• "math"	 "presentation" 				
 "statistic" 					

7/35

Skill Mixing at 7-digit Occupations (back)

Figure: Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018

Skill Mixing at 7-digit Occupatoins (back

Figure: Density for Skill Mixing Indexes (Weighted Cosine Distances), 2005 vs. 2018

Leaving One Skill Out from Non-routine (back)

Figure: Density for Skill Mixing Indexes (Weighted Cosine Distances), 2005 vs. 2018

Decomposition of Skill Mixing at 7-Digit **back**

Analytical Computer Interpersonal **3rd Order Polynomial** All occupations 0.21 0.15 0.48 High-wage 0.03 0.55 0.45 White-collar 0.21 0.20 0.52 Blue-collar 0.05 0.56 0.15 Service 0.30 0.62 0.20 5th Order Polynomial All occupations 0.18 0.50 0.22 High-wage 0.04 0.55 0.46 White-collar 0.22 0.21 0.53 Blue-collar 0.07 0.57 0.16 Service 0.38 0.73 0.26

Table: R-Squared Values for Non-Routine Skills' Mixing Index by Polynomial Order

$$\mathsf{Mix}(\mathbf{y})_{jt} = \beta_1 y_{jt}^1 + \beta_2 y_{jt}^2 + \dots + \beta_N y_{jt}^N$$

Alternative Depiction of Skill Mixing (back)

Figure: Non-parametric Depiction of Skill Intensities, 2005 vs. 2018

Time Pattern **back**

(1) Skill Pairs

Figure: Trend of Skill Mixing with Alternative Skill Measures

Alternative Skill Mixing Indexes (back)

• Inverse Herfindahl-Hirschman Index (HHI)

$$\Big[\Big(\frac{y_{a}^{j}}{y_{a}^{j}+y_{s}^{j}}\Big)^{2}+\Big(\frac{y_{s}^{j}}{y_{a}^{j}+y_{s}^{j}}\Big)^{2}\Big]^{-1}$$

• Normalized Absolute Distance

$$-\frac{|y_a^j - y_s^j|}{y_a^j + y_s^j}$$

-

Time Pattern **back**

Appendix

Figure: Trend of Skill Mixing with Alternative Indexes

Full and Updated O*NET (back)

	Shill Crowns	7-dig	7-digit Occupations			4-digit Occupations		
	Skill Groups	total	within	across	total	within	across	
E-11 O*NET	RNR Skills	6.78	4.93	1.85	10.12	9.46	0.66	
Full O NET	Non-routine Skills	9.21	5.62	3.59	12.37	git Occupations within across 9.46 0.66 9.72 2.65 10.74 -0.65 9.69 1.31 4.37 0.78	2.65	
Constant Undates	RNR Skills	5.59	6.73	-1.14	10.09	10.74	-0.65	
Constant Opdates	Non-routine Skills	4.05	5.33	-1.29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Lightcast	Non-routine Skills				5.16	4.37	0.78	

Table: Shift-Share Decomposition of Skill Mixing Index Changes

Notes: This table shows a shift-share decomposition of changes in the average level of different mixing indexes between 2005-2018 in percentile units. Specifically, for a change in the percentile of a mixing index over two periods t and τ , its change $\Delta T_{\tau} = T_{\tau} - T_t$ which can be decomposed to $\Delta T = \sum_j \left(\Delta E_{j\tau} \alpha_j \right) + \sum_j \left(E_j \Delta \alpha_{j\tau} \right) = \Delta T^a + \Delta T^w$ where $E_{j\tau}$ is employment weight in occupation j in year τ , and $\alpha_{j\tau}$ is the level of mixing index h in occupation j in year τ , $E_j = \frac{1}{2}(E_{jt} + E_{j\tau})$ and $\alpha_j = \frac{1}{2}(\alpha_{jt} + \alpha_{j\tau})$. ΔT^a and ΔT^w then represent across-occupation and within-occupation change.

Decomposition: Intensive vs. Extensive back

Appendix

	Skill Croups	6-digit Occupations			4-digit Occupations		
	Skiii Groups	total	within	across	total	within	across
	analytical + computer	10.52	6.40	4.12	10.49	6.60	3.89
	analytical + interpersonal	5.36	2.90	2.46	8.17	4.08	4.09
EILO*NET	computer + routine	4.38	2.41	1.97	5.16	2.94	2.22
Full O'NET	computer + interpersonal	7.23	3.60	3.63	11.81	7.51	4.30
	routine + analytical	4.00	2.29	1.71	4.23	3.16	1.07
	routine + interpersonal	1.93	0.12	1.81	2.35	1.08	1.26
	analytical + computer	5.59	6.03	-0.44	6.42	5.89	0.53
	analytical + interpersonal	3.53	4.58	-1.05	4.00	3.00	1.00
Constant Undates	computer + routine	2.88	3.69	-0.81	0.52	1.93	-1.42
Constant Opulates	computer + interpersonal	0.78	1.86	-1.09	6.86	5.93	0.93
	routine + analytical	2.04	2.13	-0.09	1.48	3.60	-2.12
	routine + interpersonal	0.81	0.82	-0.01	-0.33	1.47	-1.80
	analytical + computer				12.64	11.74	0.90
Lightcast	analytical + interpersonal				2.51	2.20	0.31
	computer + interpersonal				-4.18	-3.79	-0.39

Table: Decomposition of Mixing Indexes' Changes by Skill Pairs

Mixing Index Change by Gender and Education, 2005-2018

Mixing Index Change by Industries, 2005-2018 [back]

Mixing Index Change by Skill Pairs, 2005-2018 Lack

Figure

Skill Measures in NLSY (back NLSY (back quant)

Appendix

O*NET Measure	NLSY Measure	γ^{learn}_{school}	γ_j^{up}	γ_j^{down}
analytical	AFQT score	0.33	0.36	0.10
interpersonal	Deming (2017) social skill	0.33	0.05	0.00003
routine	ASVAB	0.33	1	0.36
computer	OCC/Major's 2005 Value	0.33	0.36	0.10

Table: Skill Measures in NLSY and Annual Skill Learning and Depreciation Rate

Notes: This table illustrates for each O*NET skill measure, its corresponding skill measure using NLSY79&97 data, and the learning and depreciation rate for these different skills. The AFQT is the same as the one used by Altonji, Bharadwaj, and Lange (2012) followed by Deming (2017), which controls for age-at-test, test format, and other idiosyncrasies. Deming (2017)'s social skill measure consists of sociability in childhood and sociability in adulthood in NLSY79, and two questions from the Big 5 inventory gauging the extraversion in NLSY97. The average of workers' ASVAB mechanical orientation and electronics test scores are used for mechanical skill. Since ASVAB scores are not available for the NLSY97 survey, they are imputed based on predictive regression using the NLSY79 survey. Workers' occupations' or college majors' O*NET computer skill scores in the year 2000 are used as their endowed computer skill. The skill accumulation/depreciation rate is directly from Lise and Postel-Vinay (2020)'s estimates based on monthly data converted to annual values. Skill learning/depreciating while attending college is specified to be 33% per year.

Fact 5: Skill Mixing Accounts for Polarization Dack

Figure: Smoothed Employment and Wage Changes by Skill Percentile, 2005-2018

Illustration of Labor Market

Salesperson (x^s) Computer Scientist (x^c) • Unemployed Unemployed • Occupation A (*y*^{*A*}) • Occupation B (y^A) \triangleright Surplus share $\omega_1: p(\theta(x^s, y^A, \omega_1))$ ▷ Surplus share $\omega_1: p(\theta(\mathbf{x}^c, \mathbf{y}^A, \omega_1))$ \triangleright Surplus share $\omega_2: p(\theta(\mathbf{x}^s, \mathbf{y}^A, \omega_2))$ \triangleright Surplus share $\omega_2: p(\theta(\mathbf{x}^c, \mathbf{y}^A, \omega_2))$ ▷ ... \triangleright ... • Occupation B (y^B) • Occupation B (y^B) \triangleright Surplus share $\omega_1: p(\theta(\mathbf{x}^s, \mathbf{y}^B, \omega_1))$ \triangleright Surplus share $\omega_1: p(\theta(\mathbf{x}^c, \mathbf{y}^B, \omega_1))$ \triangleright Surplus share $\omega_2: p(\theta(\mathbf{x}^s, \mathbf{y}^B, \omega_2))$ \triangleright Surplus share $\omega_2: p(\theta(\mathbf{x}^c, \mathbf{y}^B, \omega_2))$ ▷ ... ▷ ... • Occupation ... • Occupation ... $\pi(x_i'|x_i, y_i)$

Calibration of Skill Supply **back**

- Skill supply calibration: between data periods and within model period
- Across-period Skill Supply Variation:
 - Skills adjusted based on occupation or college major requirements.
 - Skill accumulation at rate $\gamma_j \times$ skill gap.
 - Annual rates adjusted by number of working weeks (47).
- Markov Skill Supply Adjustment:
 - Skill evolution follows Markov process $\pi(x'_i|x_i, y_i)$.
 - Upward adjustment probability:

$$\frac{x_j^{up} - x_j}{y_j - x_j} \mathbf{1}(x_j^{up} < y_j) \times \frac{\gamma_j^{up}}{4}$$

Downward adjustment probability:

$$\frac{x_j^{down} - x_j}{y_j - x_j} \mathbf{1}(y_j < x_j^{down}) \times \frac{\gamma_j^{down}}{4}$$

Targeted Moments (back)

	First	First Period Second Period		l Period
	Data	Model	Data	Model
A. Worker mo	ments			
Relative wage of high type				
Analytical/computer	1.46	1.83	1.60	1.61
Interpersonal	1.05	1.13	1.20	1.22
Routine	1.12	1.45	0.92	1.47
Wage return of skill mixing (untargeted)	0.07	0.04	0.07	0.04
Unemployment Rate	0.05	0.07	0.04	0.07
B. Occupation r	noments			
Relative wage of high skill	1.30	1.20	1.56	1.50
Corr. wage & abilities (low-wage)	0.23	0.64	0.49	0.45
Corr. wage & abilities (high-wage)	0.35	0.62	0.60	0.64
Employ. share (low-wage)	0.43	0.33	0.37	0.28
Employ. share (high-wage)	0.57	0.67	0.63	0.72
100 imes Skill mixing (low-wage)	97.54	98.58	98.96	99.46
100 imes Skill mixing (high-wage)	95.74	95.41	94.12	95.78

Identification of Parameters (back

• Estimate σ using within occupation variation:

$$\Delta w(\mathbf{x}, \mathbf{y}) = \omega \left[\sum_{k=1}^{K} (x^k y^k)^{\sigma} \right]^{\frac{1}{\sigma}} - A$$

- Within-occ covariance between \mathbf{x} and $w(\mathbf{x}, \mathbf{y})$ identifies σ
- Cost parameter ρ identified via firms' optimization of skill demand
- Cost parameter τ identified via employment distribution and relative wages
- Vacancy cost *c* determined by unemployment conditional on *b*

- Given Θ = {σ, ρ, τ, c, α_k}, each iteration of SMM first solves the steady state firm and worker policy function
 - 1. Fix the number of periods T
 - 2. Starting from the terminal period *T*, solve the firm problem
 - 3. Use the free entry condition to obtain the market tightness $\theta_T(\mathbf{x}, \mathbf{y}, \omega)$
 - 4. With the market tightness, solve the worker dynamic programming problem
 - 5. Repeated stepping back from t = T 1, ..., 1
 - 6. Check if the difference in worker value $U_{t+1} U_t$, $W_{t+1} W_t$ and the firm value $J_{t+1} J_t$ is less than a predetermined tolerance level. If yes stop, if not increase T and go back to first step
- Next, simulate 10,000 workers for T(T > 200) periods, burning the first 40
- Obtain dist of LM outcomes across different occ. and worker types
- SMM minimizes the distance between the model vs. data moments

Role of Skill Supply **back**

Decomposition	Analytical/ Computer	Interpersonal	Routine
Full model	15.45	15.16	-3.72
Skill supply	-2.60	-0.52	-3.13
Skill efficiency	26.59	1.60	-11.82
Complementarity	-23.86	11.01	12.33
Occ. cost	10.82	0.80	-7.42

Additional Counterfactual Analysis Dack

Caliberated Parameters (back)

Parameter	Description	V	alue
	A. Externally calibrated – search		
β	Discount Rate	().96
δ	Job separation rate	(0.10
ω	Worker share of surplus	().60
b	Unemployment benefit as a share of output	().42
η	Elasticity of the matching function	().50
μ	Matching efficiency	().65
	B. Externally calibrated – skill adjustment	(Upward)	(Downward)
γa	Annual adjustment speed of analytical/computer skill	0.36	0.10
γ_p	Annual adjustment speed of interpersonal skill	0.05	0.00
γ_r	Annual adjustment speed of routine skill	1.00	0.36
	C. Externally calibrated – skill efficiency	(Period 1)	(Period 2)
α_a	Skill efficiency of analytical/computer skill	0.63	0.95
α_p	Skill efficiency of interpersonal skill	0.05	0.08
α_r	Skill efficiency of routine skill	0.14	0.06
	D. Internally estimated	(Period 1)	(Period 2)
σ^{low}	Elasticity parameter of skills in production (low-wage)	0.64	0.41
σ^{high}	Elasticity parameter of skills in production (high-wage)	0.60	0.36
τ	Scaler of occupation operation cost	0.74	0.53
ϕ	Convexity of occupation operation cost	3.63	4.90
С	Vacancy posting cost as a share of output	0.56	0.82

Top College Majors in Skill Mixing (back)

Hybrid Index – Level	Hybrid Index – Change	
analytical + com	outer + interpersonal	
Physical Sciences	Architecture and Environmental Design	
Engineering	Computer and Information Sciences	
Letters	Communications	
analytica	l + computer	
Physical Sciences	Interdisciplinary Studies	
Engineering	Area Studies	
Letters	Computer and Information Sciences	
analytical -	+ interpersonal	
Public Affairs and Services	Architecture and Environmental Design	
Business and Management	Computer and Information Sciences	
Social Sciences	Communications	
computer -	+ interpersonal	
Social Sciences	Architecture and Environmental Design	
None, General Studies	Computer and Information Sciences	
Public Affairs and Services	Engineering	
routine	+ computer	
Transportation	Social Sciences	
Fine and Applied Arts	Agriculture and Natural Resources	
Engineering	Foreign Languages	
routine	+ analytical	
Transportation	Agriculture and Natural Resources	
Health Professions	Social Sciences	
Computer and Information Sciences	Foreign Languages	
routine +	interpersonal	
Transportation	Agriculture and Natural Resources	
Health Professions	Architecture and Environmental Design	
Military Sciences	Social Sciences	

Return to Skill Mixing Full Table with Individual Skills (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)	(5)
Occupation Skills					
Analytical	-0.023**	-0.023**	-0.015*	-0.026*	
1 maly ceca	[0.009]	[0.010]	[0.008]	[0.014]	
Computer	-0.008	-0.014	-0.009	-0.019	
I	[0.010]	[0.011]	[0.009]	[0.016]	
Interpersonal	-0.009	-0.014	-0.013*	-0.002	
1	[0.009]	[0.009]	[0.008]	[0.012]	
Mechanical	0.021**	0.029***	0.019**	0.034*	
	[0.010]	[0.011]	[0.009]	[0.018]	
Mix (non-routine skills)	0.017***	0.015***	0.014***	0.005	
	[0.005]	[0.005]	[0.005]	[0.009]	
Mix (routine + computer)	-0.035***	-0.045***	-0.037***	-0.045***	
	[0.008]	[0.008]	[0.007]	[0.013]	
Mix (routine + analytical)	-0.041***	-0.045***	-0.039***	-0.007	
х <u>э</u> ,	[0.007]	[0.008]	[0.007]	[0.013]	
Mix (routine + interpersonal)	0.029***	0.035***	0.025***	0.014	
hink (routine interpersonal)	[0.009]	[0.009]	[0.008]	[0.015]	
Worker Skills	. ,				
Afgt (applytical)		0.074***		-0.048*	-0.009**
Aiqt (analytical)		[0 011]		[0 028]	[0 004]
Computer		0.045***		0.031	0.056***
Computer		[0.006]		[0.025]	[0.002]
Social (internersonal)		0.016***		0.032	-0.001
Social (Interpersonal)		[0.005]		[0.030]	[0.002]
ASVAB (routine)		-0.015		0.015	-0.002
novin (rounic)		[0.015]		[0.024]	[0.005]
Mix (non-routine skills)		0.065***		0.030**	0.135***
		[0.017]		[0.013]	[0.009]
Mix (ASVAB mechanical + computer)		0.029*		-0.004	0.038***
hint (10 (11) Incentinent Compared)		[0.017]		[0.018]	[0.010]
Mix (ASVAB mechanical + afgt)		0.006		-0.013	0.000
		[0.008]		[0.026]	[0.004]
Mix (ASVAB mechanical + social)		-0.039***		0.011	-0.030***
		[0.008]		[0.017]	[0.004]
Ethnicity*Gender, Age, Region, Edu FE	х	Х	х	Х	х
Occupation FE	Х	Х	Х	Х	
Worker FE			Х	Х	
Observations	88,391	79,343	88,391	31,029	94,062
R-squared	0.416	0.430	0.756	0 704	0.136

Return to Skill Mixing Including Major (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)
Mix (Non-routine Skills): Occupation	0.017*** [0.005]	0.015*** [0.005]	0.014*** [0.005]
Mix (Non-routine Skills): Worker		0.065*** [0.017]	
Ethnicity*Gender, Age/Year, Region, Edu FE	Х	Х	Х
Occupation FE	Х	Х	Х
Worker FE			Х
Observations	88,391	79,343	88,391
R-squared	0.416	0.430	0.756

Robustness Checks of Return to Skill Mixing (back)

ependent: ln(hourly wage)	(1)	(2)	(3)	(4)
Analytical	-0.014*	-0.008	-0.009	-0.013
	[0.008]	[0.033]	[0.008]	[0.008]
Computer	-0.002	0.069**	0.002	-0.038***
	[0.009]	[0.027]	[0.009]	[0.010]
Interpersonal	-0.019**	-0.118***	-0.018**	-0.014*
	[0.008]	[0.030]	[0.008]	[0.008]
Routine	0.026***	0.091***	0.005	0.010
	[0.009]	[0.017]	[0.008]	[0.008]
Mix (analytical + computer)	0.007	-0.040	0.008*	0.020***
	[0.005]	[0.036]	[0.005]	[0.007]
Mix (analytical + interpersonal)	0.010**	0.156***	0.006	0.025***
	[0.004]	[0.042]	[0.004]	[0.005]
Mix (computer + routine)	-0.028***	-0.045***	-0.021**	-0.087***
	[0.007]	[0.015]	[0.008]	[0.013]
Mix (computer + interpersonal)	-0.011**	-0.019	-0.013***	-0.021***
	[0.005]	[0.033]	[0.005]	[0.008]
Mix (routine + analytical)	-0.033***	-0.080***	-0.041***	-0.041**
	[0.007]	[0.015]	[0.008]	[0.018]
Mix (routine + interpersonal)	0.010	0.033**	0.033***	0.026**
	[0.007]	[0.016]	[0.006]	[0.012]
Ethnicity $ imes$ Gender, Age, Region, Edu FE	Х	Х	Х	Х
Occupation FE	Х	Х	Х	Х
Worker FE	Х	Х	Х	Х
Observations	87,655	87,655	87,655	87,655
R-squared	0.757	0.757	0.757	0.758