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• Secular ↑ online retail sales (e-commerce)
• ”Opening to trade” challenges regional equality

◦ Comparative advantages, worker specializations, input-output linkages
◦ The unique nature of online retailing may exacerbate
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This Paper
E-commerce as a

unique trade shock ⇒
Spatial GE and reallocation
(welfare, empl. dispersion)

• Empirics: New facts on Amazon sales, retailers, facilities
◦ Online retailer agglomeration, sales & trade

• Theory: multi-region & -sector spatial (retail) trade model
◦ Consumer search & shipping
◦ Location choice of online retailer ⇒ ↑agglomeration

• Policy: place-based public finances
Contribution: new data & extend spatial trade theory ⇒ e-commerce
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The Online Retail Business Model Figure 2  
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Insights:
• Agglomeration: Trade frictions (HME, CA) ⇔ Dispersion: Factor prices
• Their agglomeration should be assoc. with different trade flows
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Data Sources
• Amazon Retailers and Products (Keepa.com)

◦ Universe of products on Amazon (36 categories, 2016-2020, 0.5%)
◦ Information on prices, and sales ranking, converted to sales
◦ Collect sellers’ addresses, FBA status

• Amazon Facilities (MWPVL)
◦ Addresses, square feet, date, type.[Houde, Newberry & Seim (HNS,2021)]
◦ Focus on large fulfill. & distr. centers; drop specialized, small-package

• DOT Commodity Flow Survey (CFS)
◦ Origin-destination data on trade value, volume, NAICS category

• Other Datasets
◦ Surveys: CBP, BEA, ACS
◦ Geography Datasets (topography, climate)
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Empirical Patterns
• 1a: Online retail sales is more concentrated than average retail sales...

• 1b: . . . and those that are FBA more concentrated than non-FBA

Figure 4. Spatial Concentration of E-commerce Sales and Sellers (2016-2022) 

(1) Regional Share of E-commerce Sales (2) Regional Share of Retail Sector Sales 

  
(3) Regional Share of E-commerce Sales with FBA (4) Regional Share of E-commerce Sales without FBA 

  

 
Notes: These density plots show the share of e-commerce sales or sellers across different U.S. states in year 2000 to 2022,  as 
illustrated in the six panels. Darker colors indicate higher percent share. 
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Empirical Patterns
• 1a: Online retail sales is more concentrated than average retail sales...
• 1b: . . . and those that are FBA more concentrated than non-FBA

Figure 4. Spatial Concentration of E-commerce Sales and Sellers (2016-2022) 

(1) Regional Share of E-commerce Sales (2) Regional Share of Retail Sector Sales 

  
(3) Regional Share of E-commerce Sales with FBA (4) Regional Share of E-commerce Sales without FBA 

  

 
Notes: These density plots show the share of e-commerce sales or sellers across different U.S. states in year 2000 to 2022,  as 
illustrated in the six panels. Darker colors indicate higher percent share. 
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Empirical Patterns
• 2: Durable/standardized ones are less concentrated

Table: HHI Index by Product Categories
Category name HHI Index
Toys & Games 0.12
Patio, Lawn & Garden 0.12
Arts, Crafts & Sewing 0.07
Sports & Outdoors 0.14
Office Products 0.16
Grocery & Gourmet Food 0.08
Tools & Home Improvement 0.21
Movies & TV 0.08
Musical Instruments 0.10

7 / 24



Motivation
Empirical Facts
A Spatial Retail
Trade Model
Quantification
Amazon’s Impacts

Empirical Patterns
• 3a: Online retail is less correlated with population or taxes

• 3b: . . . and the concentration aligns with truck routes

Dependent Variable (in %) Online Retail Overall Retail
ln (corporate tax) -0.01 0.03*

[1.29] [0.02]
Population share (%) 14.54* 1.06***

[7.92] [0.26]
Year, State FE X X
Observations 230 230
R-squared 0.52 1.00
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Empirical Patterns
• 3a: Online retail is less correlated with population or taxes
• 3b: . . . and the concentration aligns with truck routes
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Empirical Patterns
• 4a: Origins with ↑ online retailers export more tradable goods
• 4b: Destinations with ↑ online retailers import less tradable goods
• 5: Regions near to fulfillment centers have more trade flows

Dependent Variable: ∆ ln (Shipment)
∆ share (%) of online sellers - origin 3.5***

[0.8]
∆ share (%) of online sellers - destination -1.4*

[0.7]
∆ ln (bilateral distance via Amazon facility) 4.92*

[2.53]
Origin, destination FE ✓

Industry FE ✓

Observations 24,693 24,693
R-squared 0.20 0.19

9 / 24



Motivation
Empirical Facts
A Spatial Retail
Trade Model
Quantification
Amazon’s ImpactsA Spatial Retail Trade Model

9 / 24



Motivation
Empirical Facts
A Spatial Retail
Trade Model
Quantification
Amazon’s Impacts

Summary
• Environment

◦ N regions: n (destination), m (origin)
◦ J sectors: j (home production, service) & (durable, non-durable)
◦ 3 subsectors: M (manufacturer), R (online retailer), B (brick-and-mortar)

1. Demand: Sequential directed search → CES w/. demand shifter
2. Intermediate: Ricardian (EK) → manuf. trade flow
3. Online Seller: Location choice → agglomeration, retail trade flow

◦ Two approaches: Arkolakis et al. (2018, 2017) vs. Chaney (2008)
◦ Key difference: multiple destinations & origins, vertical production

4. Worker: Roy labor supply
10 / 24
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Consumer Demand
• Sequential Directed Search

◦ A continuum of consumers (n), sector share (η j)
◦ Pick 1 among measure 1 + Oj sellers, Oj = ∑m Ψj

m

◦ vj
nm = ln η jyn − ln pj,K

nm + ϵ
j,K
nm (i.i.d. E(ϵj,B

nm) = 0, and E(ϵj,R
nm) = ln(µ))

◦ Sequential directed search: pay k to see ϵ
j,K
nm, or continue Weitzman (’79)

1. Any SDM has a discrete choice model (DCM) w/. same demand proof
2. CES demand is a special case of DCM with extreme type I error proof

Theorem
A rep. consumer in n with weights η j has nest CD-CES demand as below under
sequential ordered search and if ϵ

j,K
nm is distributed extreme type I

Cn = ΠJ
j=1(C

j
n)

η j
, Cj

n = [(cB
nn)

σj−1
σj + µ

N

∑
m=1

∫ Ψj
m

0
(cR

nm(i))
σj−1

σj di]
σj

σj−1
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Vertical Production
• Intermediate Varieties (M)

◦ A rep. firm in (n, j, M) produces varieties ej ∈ [0, 1]

qj,M
n (ej) = an(ej)ln(ej)

• Retail Sector (R/B)

◦ Collect varieties ej ∈ [0, 1]: qj,R/B
n = [

∫ 1
0 qj,M

n (ej)
αj−1

αj dϕj(an(ej))]
αj

αj−1

Qj,R/B
n = zj,R/B

n

[
(hj,R/B

n )βn(l j,R/B
n )1−βn

]γ
j
n
[
qj,R/B

n

]1−γ
j
n

◦ i.i.d. Fréchet (θ j, T j
n). Intermediate exp. share: xj,M

nm = (κM
nmcj,M

m )−θ j
T j

m

∑N
g=1(κ

M
ngcj,M

g )−θ j T j
g

◦ Unit cost: cj,R/B
n = (ω

j,R/B
n )γ

j
n(pj,M

n )1−γ
j
n /zj

n. For online: pj,R
nm = cj,R

m κR
nm
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Online Retailer Location
• Optimal Location (R) alternative

◦ Online retailers draw (zj,R
1 , ..., zj,R

N ) , entry cost fm. Optimal location:
m∗ = arg min

m

∑
n

(
σ̃

cj,R
m

zj,R
m

κR
nm

Pj,R
n

)σj−1

· 1
η jXn

 (≡ σ̃ξ
j
m

zj,R
m

)

Entry: ∑n(
pj,R

nm/µ

Pj,R
n

)1−σj
η jXn ≥ σjwj,R

m fm . Thold: c̄j,R
m = µzj,R

m

σ̃j

[
σj

η j
wj,R

m fm

∑n(κ
R
nm/Pj,R

n )σj−1X−1
n

] 1
1−σj

• Aggregate Retail Trade
◦ Multi-var Pareto : P(Zj

1 < z1, ..., Zj
N < zN) = 1 − (∑N

m=1[T
j,R
m z−ϕ

m ]
1

1−ρ )1−ρ

Ψj
m = P(m = argminm{ σ̃ξ

j
m

zj
m
} ∩ cj,R

m < c̄j
m) = ψ

j
m(c̄

j
m)

ϕ
ψ

j
m =

Tj,R
m (ξ

j
m )

−ϕ
1−ρ

∑N
m=1 [T

j,R
m (ξ

j
m )−ϕ ]

−ρ
1−ρ

Bilateral online retail exp. share Regional brick-and-mortar exp. share
xj,R

nm = Ψj
m(κ

R
nmcj,R

m /µ)1−σ

∑h Ψj
h(κ

R
nhcj,R

h /µ)1−σ+ 1
O (cj,B

n )1−σ
xj,B

n =
1
O (cj,B

n )1−σ

∑h Ψj
h(κ

R
nhcj,R

h /µ)1−σ+ 1
O (cj,B

n )1−σ
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Labor Supply

• Employment Share
◦ Ln HHs choose sector {j, K} (home production j = 0)

▶ K = {M, R, B} the three subsectors for dur/non-dur sectors, ∅ for others
◦ Draw zj,K

n from i.i.d. Fréchet (νn, Aj,K
n )

π
j,K
n =

Aj,K
n (wj,K

n )νn

Φn
, where Φn =

J

∑
j=0

∑
K={M,R,B,∅}

Aj,K
n (wj,K

n )νn

• Sectoral Wage Income
◦ Let l j,K

n efficiency units of labor provided to sector (j, K)

◦ Wage income in (j, K) becomes wj,K
n l j,K

n = Γ( νn−1
νn

)Φ1/νn
n π

j,K
n Ln
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E-commerce and General Equilibrium Outcomes
• General Equilibrium

◦ Market clearing details
◦ Comparative statics w/. exact hat algebra details

• E-commerce
◦ ↑ Match efficiency µ (Dinerstein et. al 2018; Goldmanis et. al 2010)
◦ ↓ Bilateral frictions κR

ni (Houde, Newberry & Seim 2021)
◦ ↑ Online retailer agglomeration Ψj

m (Keepa, targeted)
• Welfare

◦ Definition: real income per capita Wn = Yn/Ln
Pn

, its change:
Ŵn = ŵ0

n(π̂
0
n)

−1
νn︸ ︷︷ ︸non-emp.worker special.

× ΠJ
j=1(x̂j,B

nn )
−ηj

σj−1︸ ︷︷ ︸
industrycomposition

(ĉj,R/B
n )︸ ︷︷ ︸

input-outputlocal pref.
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Calibration: General

Section Param. Description Estimation/Caliberation

Consumer
η

j
n Sector share of consumption CFS 2007

σj Elasticity of subs. across retailers Keepa + IV

Labor Supply π
j
n Share of empployment CBP, ACS

vn Fréchet shape of worker product. Galle, Rodŕıguez-Clare & Yi (2022)

Production
β

j
n Share of structures BEA + Greenwood et. al (1997)

θ j Fréchet shape of sector product. Caliendo and Parro (2015)
γ

j
n Value-added share of retail goods BEA, CFS

Expenditure
xj,M

ni Interm. expenditure share CFS 2007
xj,B

n Brick-and-motar expenditure share CFS 2007, E-Stats
xj,R

nm E-commerce expenditure share CFS 2007, E-Stats
pj,B

n Brick-and-motar price index CFS 2007, E-Stats, CES
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Baseline Economy (2007): Model vs. Data
• Model implied regional income (untargeted)Figure 7. Employment Changes: Model vs. Data 

Manufacturing Online Retail 

  

Brick-and-Mortar Service 

  
 
Notes: These density plots show the welfare changes across different states due to the calibrated Amazon shock.  
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Sequential Estimation: Amazon Shock

Section Param. Description Estimation/Caliberation
κ̂R

nm Iceberg cost change Amazon data + CFS 2007 + IV
Amazon µ Matching efficiency E-stats + CES
Shock Ψj

m Online retailer location probability Keepa
O Measure of online retailers E-stats
T j

n Fréchet scale of sectoral product. Assume constant
Aj

n Fréchet scale of labor product. Assume constant
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Sequential Estimation: Amazon Shock
• Extrapolate Amazon Ice-berg cost shock

◦ Intuition: Ice-berg is increasing in distance
◦ Estimate coefficient of ice-berg cost on shipping distance details

ln(κ j,R
nm) = δjDistancenm + X′

nmθ + δ
j
n + δ

j
m + ϵ

j
nm

◦ Estimate reduction in shipping distance due to Amazon
▶ Build counterfactual facilities based on exog. factors as IV for actual ones

• Back-out online matching efficiency
◦ Intuition: % online exp. should inform matching, conditional on shipping

∑N
m=1 xj,R

nm/xj,R
nn = (µ)σj−1 ∑N

m=1 Mm(pj,R
m κR

nm/pj,R
nn )

▶ Use Keepa for Mm , above estimated κR
nm , CES for pj,R

m , pj,R
n0

δdur δnondur κ̂ µ

1.5 2.1 0.97 1.27[0.2] [0.6] [0.15] [1.46]
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Welfare – Total Figure 6. Welfare Change Due to Amazon Shock 

 
(1) Total Welfare Change (2) Price Effect 

  

(2) Income Effect (4) Non-employment Change 
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Figure: Total Welfare Change

• ↑ welfare overall (avg: 6.7 %)
◦ States on the East and West Coasts experience larger welfare gains
◦ Midwestern states see smaller increases
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Welfare – DecompositionFigure 6. Welfare Change Due to Amazon Shock 

 
(1) Total Welfare Change (2) Price Effect 

  

(2) Income Effect (4) Non-employment Change 
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Figure: Price effects

Figure 6. Welfare Change Due to Amazon Shock 
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Figure: Income effects

• Price effects ↑ welfare (13.1%); Income effects ↓ welfare (5.4%)
◦ States w/. CA in e-commerce and diverse industries (NY, MA, WI, CA, FL):

Positive income effects due to ↑ online sales, wages
◦ Midwestern: Negative income effects from competition and labor shifts.

Lower initial online spending → Positive price effects
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Result – Employment
All States Below 50th PercentileOnline Sales Density

Sector Mean Std. Dev. Mean Std. Dev.
Manufacturing -4.3 (7.6) -1.8 (1.1)
Online Retail 109.8 (97.8) 63.3 (64.8)
Brick-and-Mortar -11.1 (8.0) -8.6 (1.2)
Service -1.6 (7.9) 1.2 (1.2)
Non-Employment -1.3 (8.1) 1.7 (0.8)

Table: Employment Changes by Sector and State Groups

◦ Reallocate from manufacturing/brick-and-mortar to online retail;
non-employment ↓ by 0.5 ppts.

◦ Midwestern states shift more to service/non-employment sectors
◦ ↑ inequality: Gini 0.11→0.38
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(Simple) Revenue Redistribution
• Government Objectives

◦ Common welfare changes (∀n, Ŵn = Ŷn
P̂n

= k), by manipulating Y′
n → Ỹ′

n

◦ Same total surplus ∑50
n=1(Ỹ

′
n − Yn) = B = ∑50

n=1(Y
′
n − Yn)

⇒ k =
B+∑50

n=1 Yn

∑50
n=1 Yn · P̃n

Pn

= 0.97; redistrib. amt = (Ỹ′
n − Y′

n) = Ynk P̃n
Pn

− Y′
n

Figure. Revenue Redistribution 
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Conclusion

• E-commerce as unique trade shock
• New facts on online retailer agglomeration (sellers, trade flows)
• Spatial retail trade model w/. location choices (search efficiency, elastic labor)
• Amazon ⇒ efficiency equality tradeoff on welfare, empl.

◦ ↓ prices, ↑ variety, but ↓ income and empl. adjmnt in Midwestern
◦ Need national level revenue redistribution
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Appendix
Weitzman (1979) back

Search is ordered: Weitzman (1979) optimal stopping
• Assign thresholds/scores v̄i st. E[max{x̂i + ϵ̃i − v̄i, 0}] = 0, where

x̂i = ln y − ln pi

• Therefore, v̄i = x̂i + γ−1
ϵi
(ln si), where γϵi(z) = E[max{ϵi − z, 0}],

decreasing function
• Search in decreasing order of the scores
• Stop if find a v̄i exceeding all remaining
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Appendix
Proof of OSM to DCM back

Proposition: For any OSM, there is a DCM with same demand & payoff.
• Under OSM, consumer’s optimal choice is the one for which

v∗i = min{vi, v̄i} is largest (Armstrong and Vickers (2015),
Armstrong(2017), Choi, Dai and Kim(2018)), where
v̄i = x̂i + γ−1

ϵi
(ln µi) = x̂i + r(ln µi), and γϵi(z) = E[max{ϵi − z, 0}], the

upside gain function
• Consumer’s demand for i, Di is thus:

P[v∗i > max
j ̸=i

v∗j ] =
∫ ∞

−∞
P[z > max

j ̸=i
v∗j ] fv∗i (z; xi, x̂i)dz =

∫ ∞

−∞
Πj ̸=iFv∗j (z; xj, x̂j) fv∗i (z; xi, x̂i)dz.

• Under advertised price, xj = x̂j, ∀j. Di then simplifies to∫ ∞

−∞
Πj ̸=iFωj(ϵj) fωi(ϵi)dϵ, where ωi = min{ϵi, r(ln µi)}.

Thus, Di is equivalent to the demand of a DCM: vi = xi + ϵDC
i , iff

Fω = FDC
ϵ . Anderson, Engers and Savelle (2022) show there always

exist a set of ϵ distributions that satisfy this.
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Appendix
Proof of DCM to CES back

Proposition: The CES demand is a special case of DCM with extreme type
I error.
The following proof follows Anderson, De Palma, and Thisse (1987, 1989)
closely
• Consumer’s utility ui = ln ci, income y. Let price of i: p̃i = µi pi

• Random utility/match value ϵi with i, st. net value:
vi = ln y − ln p̃i + ϵDC

i

Further, re-scale ϵDC
i = χϵ̃i st. ϵ̃i mean 0 and unit variance

• The demand for i, Di is then
P[vi > max

j ̸=i
vj] =

∫ ∞

−∞
Πj ̸=iFϵDC

j
(ϵDC

j ) fϵDC
i
(ϵDC

i )dϵ.

• And if ϵ̃i is distributed extreme type I, Di then simplifies to
Di =

µi p
−1/χ
i

∑n
j=1 µj p

−1/χ
j

,

which is the same demand as CES utility: [∑N
i=1(

1
µi

ci)
σ−1

σ ]
σ

σ−1 , where
χ = 1

σ−1 .

3 / 10



Appendix
Market Clearing Conditions back

• Retail and intermediate goods:
XR,j

n =
N

∑
i=1

xR,j
in (IiLi), where IiLi =

J

∑
k=0

[rg,k
i gR,k

i + ∑
K=M,R

(rh,k
i hK,k

i + wk
i lK,k

i )]− Ωi,

XM,j
n =

N

∑
i=1

(1 − γ
j
i)xM,j

in XR,j
i .

• Trade balance:
J

∑
j=0

N

∑
i=1

(xM,j
ni XM,j

n + xR,j
ni XR,j

n ) + Ωn =
J

∑
j=0

N

∑
i=1

(xM,j
in XM,j

i + xR,j
in XR,j

i ).

• Labor market: wM,j
n lM,j

n = βnXM,j
n , wR,j

n lR,j
n = γ

j
nmR,j

n βnXR,j
n

• Structure: rh
nhM,j

n = (1 − βn)XM,j
n , rh

nhR,j
n = γ

j
n

1
ρ

R,j
n
(1 − βn)XR,j

n

• Capital: rg
ngR,j

n = ( ρ
j
n−1

1−βn
)wR,j

n π
R,j
n Ln
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Appendix
Comparative Statics back

• Employment shares:
π̂0

n =
Â0

n(ŵ0
n)

νn

Φ̂n
, π̂

K,j
n =

ÂK,j
n (ŵK,j

n )νn

Φ̂n
, where Φ̂n =

J

∑
h=0

∑
K=M,R

πK,h
n ÂK,h

n (ŵK,h
n )νn .

• Input costs: ĉM,j
n = ω̂

M,j
n , ĉR,j

n = (ρ̂
R,j
n ω̂

R,j
n )γ

j
n(P̂M,j

n )1−γ
j
n , where

ω̂
K,j
n = ŵK,j

n (l̂K,j
n )βn = (ŵK,j

n )1+βn(π̂
K,j
n )

(νn−1)βn
νn , and P̂M,j

n = (
N

∑
i=1

xM,j
ni (κ̂M

ni ĉM,j
i )−θ j

T̂ j
i )

−1
θ j .

• Trade shares: x
′M,j
ni = xM,j

ni (
κ̂M

ni ĉM,j
i

P̂R,j
n

)−θj T̂ j
i , x

′R,j
ni = xR,j

ni (
κ̂R

ni ĉ
R,j
i

µ̂
j
ni P̂

R,j
n
)1−σj

.

• Market clearing:
X

′R,j
n = ∑N

i=1 x
′R,j
in η j

[
∑J

k=0(
1

1−βi
)(ρ̂R,k

i ŵR,k
i l̂R,k

i ρR,k
i wR,k

i LR,k
i + ŵM,k

i l̂M,k
i wM,k

i LM,k
i )− Ωi

]
,

X
′M,j
n =

N

∑
i=1

(1 − γ
j
i)x

′M,j
ni X

′R,j
n ,

ŵM,j
n l̂M,j

n wM,j
n LM,j

n = βnX̂M,j
n , ŵR,j

n l̂R,j
n wR,j

n LR,j
n =

1

ρ̂
R,j
i

γ
j
nβnX̂R,j

n .
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Appendix
Aggregate Trade back

• Pareto productivity: P(Zj < z) = Gj(z) = 1 − z−ρ

• Enter: ∑n

(
pj

nm/µ

pR
nj

)1−σ

η
j
n ≥ ω

j
m f j

m. cj
m = µ

(
σ
σ̃n

)1−σ
[

wj
m f j

m

∑n(kR
nm/pR

nj)
1−σ 1

yn

] 1
1−σ

• Bilateral trade shares

xj,R
nm =

λYm

((
wj,R

m

)γj (
Pj,M

m

)(1−γj) (κR
nm)

σ−1
ρ

µ

)−ρ
 wj,R

m fm

∑n

(
κR

nm
PR,j

n

)1−σ

Yn


σ−ρ−1

σ−1

∑h λYh

((
wj,R

h

)γj (
Pj,M

h

)(1−γj) (κR
nm)

σ−1
ρ

µ

)−ρ

 wj,R
h fh

∑n

(
κR

nh
PR,j

n

)1−σ

Yn


σ−ρ−1

σ−1

+

((
ω

j,B
n

)γj (
Pj,M

n

)(1−γj)
)1−σ

xj,B
nn =

((
ω

j,B
n

)γj (
Pj,M

n

)(1−γj)
)1−σ

∑h λYh

((
wj,R

h

)γj (
Pj,M

h

)(1−γj) (κR
nm)

σ−1
ρ

µ

)−ρ

 wj,R
h fh

∑n

(
κR

nh
PR,j

n

)1−σ

Yn


σ−ρ−1

σ−1

+

((
ω

j,B
n

)γj (
Pj,M

n

)(1−γj)
)1−σ
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Appendix
Estimation: Amazon Transportation Shock back

• Data: Amazon’s Facility Network
◦ address, square feet, date, type.[Houde, Newberry & Seim (HNS,2021)]
◦ focus on large fulfill. & distr. centers; drop specialized, small-package
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Appendix
Estimation: Amazon Transportation Shock back

• Need to specify how:
origin → facility → destination

• HNS (2021): 90% of orders from 3 closest centers to dest.
• Assume order is processed by among the 3 closest to destination, the

closest to origin

1 

 
 

Year Mean Std. Dev P25 P75 
2007 490.2 376.3 234.9 739 
2017 287.9 225.6 124.7 409 
Diff. -202.2 295.6 -249.8 -12.5 

Log Diff. -.5 .6 -.9 0 
     

 

Year Mean Std. Dev P25 P75 Corr 
2007 623.4 400.3 349.6 897.4 0.10 
2017 335.2 278.4 143.9 412.1 0.58 
Diff. -288.2 361.8 -355.9 0 -0.22 

Log Diff. -.7 .8 -1.1 0 -0.02 
      

 
    Dependent Variables  

 
Actual log 
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First Stage Results   
 Counterfactual log distance 0.399*** 

 

  [0.015] 
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 Avg. lag GDP 
 

0.000 
  

 
[0.000] 

 Avg. GDP growth 
 

-0.004*** 
    

 
[0.001] 
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Appendix
Estimation: Amazon Transportation Shock back

• Spatial Simulated IV
◦ concern: endogeneity of facilities
◦ simulate facilities’ locations based

only on geo. cost factors, to be uses
as IV (Duflo et.al, 2007; Lipscomb et.al, 2013;
Faber 2014)

◦ need orthogonality of geo. factors

• Simulation Steps
◦ based on observed # of new centers,

determine AMZ’s budget
◦ rank counties by geo. factors
◦ highest ranks get new centers
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Appendix
Estimation: Amazon Transportation Shock back
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